Sex differences in *Drosophila* development and physiology.

Jason W. Millington and Elizabeth J. Rideout

Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 Canada

Corresponding author: Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 Canada. Email: elizabeth.rideout@ubc.ca. Phone: (604) 822-0623. Fax: (604) 822-2316.

Male and female flies differ in many aspects of development and physiology. Identifying the mechanism(s) underlying sex differences in cell and body growth, organ function, and metabolism is important in understanding how these male-female differences in development and physiology are created. Recently, studies in *Drosophila* have advanced our understanding of the sex-specific regulation of growth and cell signaling pathways, organ homeostasis, and metabolism. Here, we highlight how this knowledge provides important insight into the mechanisms underlying sex differences in body size, stress responses, lifespan, and disease processes. In addition, we will discuss how studying development and physiology has revealed previously unrecognized complexity in the *Drosophila* sex determination pathway.

KEYWORDS

Drosophila; sex differences; physiology; development; metabolism; insulin signaling; intestinal stem cell; body size; sex determination; lifespan

MAIN TEXT

Introduction.

Sex differences in *Drosophila* have been studied in exquisite detail for over 100 years. Males and females differ in sexual traits and reproduction (*e.g.* genitals, abdominal pigmentation, reproductive organs), and in development and physiology (*e.g.* body size, stress responses, lifespan). Enormous progress has been made in elucidating the mechanisms underlying sex differences in sexual traits, reproduction, development, and behaviour\(^1\-^7\). The goal of this review is to highlight how recent studies on organ growth
and function, growth regulation and body size, and adult metabolism and physiology, have further advanced our understanding of sex differences in multiple aspects of development and physiology. In addition, we will discuss how these recent studies on Drosophila development and physiology have provided new insights into the canonical sex determination pathway.

Sex differences in organ homeostasis: lessons from the Drosophila intestine.
The mechanisms underlying male-female differences in sex-limited adult structures and sexually dimorphic organs (e.g. abdominal pigmentation, gonads) are well studied; however, less is known about sex differences in cells and organs without obvious sexual dimorphism. In this section, we will highlight recent studies on male-female differences in the Drosophila intestine (Fig. 1), and discuss the implications of these findings for sex differences in the regulation and function of other organs.

In flies, the digestive tract breaks down food, absorbs nutrients, regulates energy homeostasis, provides a barrier against the external environment, and communicates with other organs. Recently, many aspects of intestinal physiology were found to differ between male and female flies, revealing previously unrecognized sex differences in this key organ. While many factors affect intestinal physiology, one determinant of intestinal growth and tissue integrity is the proliferation of intestinal stem cells (ISCs). When ISC proliferation was compared in males and females, significant sexual dimorphism was identified: ISC proliferation is higher in virgin females than in males. This sex difference is further enhanced by mating, as ISC proliferation is significantly higher in mated females compared to virgin females. One recent study demonstrated a key role for juvenile hormone (JH) in promoting elevated ISC proliferation in mated females, and extended this finding by showing that JH was also responsible for mating-induced changes to lipid metabolism in differentiated enterocytes. Future studies in both the ISCs and enterocytes will be important to fully characterize sex differences and mating-induced changes to these cells, and to examine other intestinal cell types such as the enteroendocrine cells.

In addition to identifying sexual dimorphism and mating-induced changes to ISCs and enterocytes, recent studies have also provided significant insight into how these differences impact physiology in males and females throughout the lifespan. For example, increased gut length due to elevated ISC proliferation enhances reproductive output, as females with reduced gut length had a modest reduction in egg production. Similarly, the female-biased lifespan extension in response to dietary restriction and rapamycin feeding is associated with a female identity in the enterocytes of the mid-gut. In mated females, changes to the gut alter defecation frequency, fecal pH and water content, which could potentially affect nutrient absorption. Females also survive longer in response to infection-induced damage to the intestinal epithelium; however, more work is needed to determine whether this increased survival is linked to sex differences in ISC proliferation and enterocyte physiology. Despite these benefits, there are disadvantages associated with female-specific aspects of intestinal physiology; for example, increased ISC proliferation makes females more susceptible to age-induced gut barrier dysfunction, and to the development of genetically-induced tumours.

Given the diverse traits associated with intestinal regulation and function, such as
lifespan14-16, nutrient absorption9, and energy homeostasis8,17,16, future studies will likely uncover more physiological consequences of sex differences in the intestine.

Beyond the intestine, these studies reveal a critical need for systematic studies on sex differences and mating-induced changes in other organs. Transcriptomic analysis has revealed sex differences in gene expression in many organs19-23; yet, the developmental and physiological consequences of these differences remain largely unknown. Expanding our knowledge of fundamental cellular processes and organ function in both males and females will provide critical insight into sex differences in physiology, stress responses, aging, and disease susceptibility.

Sex differences in body size: insights into the sex-specific regulation of signaling pathways.

Adult female flies are significantly, and visibly, larger than male flies. Despite studies demonstrating important roles for cell-cell signaling pathways in the regulation of sex differences in imaginal disc growth24-29, the signaling pathways responsible for creating a male-female difference in larval and adult body size (sexual size dimorphism, SSD) remain unclear. In this section, we will describe recent advances in our knowledge of how this sex-specific regulation of cell signaling may impact other aspects of development and physiology.

Final body size in \textit{Drosophila} is determined by the rate and the duration of larval growth30. Recent studies revealed that the mechanism underlying increased body size in females is an elevated rate of larval growth31-33**. In flies, the insulin/insulin-like growth factor signaling pathway (IIS) plays a key role in promoting an increased rate of larval growth in response to nutrient input34-36, and temperature37, where increased IIS activity stimulates growth to enhance body size38-41. Interestingly, IIS was recently implicated in the regulation of SSD, since SSD in adult weight was abolished in flies carrying hypomorphic mutations in the \textit{insulin receptor} gene (\textit{InR})32. Supporting a role for IIS in regulating SSD, flies raised on low nutrient medium, which reduces IIS pathway activity, abolished SSD in pupal volume42**, a measure of larval growth. This reduction in SSD is not simply a generalized effect of reducing growth in the faster-growing sex, since SSD is preserved in animals with pharmacological inhibition of the Target-of-Rapamycin (TOR) pathway42**, another nutrient-responsive growth pathway that affects body size43,44. Taken together, these results support a key role for IIS in regulating SSD32,42**.

An obvious line of enquiry arising from these studies is a comparison of IIS regulation in males and females. One important way that IIS activity and function are modulated is via regulation of the \textit{Drosophila} insulin-like peptides (\textit{dilps}). Although we currently lack a comprehensive examination of \textit{dilp} regulation in male and female larvae, due to complex regulation of \textit{dilp} genes40,41,45-48, Dilp proteins31,49-53, and Dilp secretion from the insulin-producing cells (IPCs)50,54-58, recent progress has been made. For example, in late third instar larvae, \textit{dilp3} transcript levels were found to be male-biased, whereas the secretion of Dilp2, an important growth-promoting Dilp released from the IPCs40,41,54,59,60, was higher in female larvae42** (Fig. 2). This difference in \textit{dilp} regulation may affect IIS activity, as a comparison of IIS activity in late third instar larvae suggests IIS activity is higher in female larvae than in male larvae at this stage42**, though not at
earlier larval stages33**,42**. Yet whether the sex-specific regulation of \textit{dilp3} and Dilp2, and possibly other \textit{dilps}, affects sex differences in SSD remains unresolved. In one study, the loss of \textit{dilp2} had female-biased effects on adult weight (11% reduction in females, 5% reduction in males), whereas tandem loss of \textit{dilp2,3} reduced adult weight in both sexes by 7%43. In a separate study, SSD in larval weight was unaffected by loss of \textit{dilp2}, or loss of \textit{dilp1-5}33**. At first glance, this data seems to argue against a role for the \textit{dilps} in creating SSD; however, levels of \textit{dilp5} mRNA are up-regulated in \textit{dilp2,3} double mutants, and \textit{dilp6} mRNA is strongly up-regulated in animals lacking \textit{dilp2,3,5}45. Thus, increased knowledge of the sex-specific regulation of all \textit{dilp} genes and Dilp proteins, including compensatory regulation45,46, will be required to interpret data from studies investigating a role for the \textit{dilp} genes in the regulation of SSD. Further, given that both \textit{dilp} regulation and SSD are modulated by nutrient quantity and quality41,61,62, identifying sex-by-diet interactions on Dilp regulation and SSD will be essential to understand the individual and combinatorial effects of mutations in \textit{dilp} genes on SSD, and other IIS-regulated phenotypes such as lifespan.

Other than IIS, several growth and signaling pathways have recently been found to have sex-biased effects on development and physiology. For example, reduced levels of potent growth regulator Myc in males likely contributes to their decreased larval weight, as increasing the copy number of Myc in males increases body size, whereas decreased Myc copy number reduces female larval weight63. Similarly, the transforming growth factor-β (TGF-β) and epidermal growth factor receptor (EGFR) signaling pathways have sex-limited effects on wing shape and size64, and the Toll pathway is sex-specifically regulated both under normal conditions and in response to infection with Gram-negative bacteria65. Future studies will be important not only to identify growth and signaling pathways with sex-biased effects, but also to determine the developmental and physiological significance of this sex-specific regulation.

Physiology and metabolism in adult flies.

\textit{Drosophila} is an emerging model to study metabolic regulation and physiology66,67, yet few studies include both males and females. In this section we will describe recent advances in our knowledge of male-female differences in adult metabolism and physiology. While many of these differences reflect mating-induced changes in females rather than sexual dimorphism in physiology and metabolism, this knowledge provides an essential starting point for future studies on the mechanisms underlying male-female differences in physiology and metabolism.

Males and females differ in many aspects of metabolism and physiology under homeostatic conditions (e.g. lipid metabolism68). One important factor that affects male-female differences in physiology and metabolism is the level of circulating hormones. For example, titers of the steroid hormone ecdysone are higher in mated females69-71. Recently, this increased ecdysone level was shown to play a critical role in establishing a ‘female metabolic state’ in which females store increased levels of triglyceride and glycogen than males72. This increased energy storage likely plays an important role in supporting the energetic demands of reproduction72**, however, future studies will need to determine whether male-female differences in ecdysone titers and energy storage also exist independently of mating. In addition to modulating energy storage, ecdysone also regulates early female germline sexual differentiation73, somatic cyst stem cells in
the male testis73, cell division in germline stem cells in the ovary74, and the creation of sexually dimorphic neural circuits75. Given that ecdysone regulates diverse aspects of physiology and metabolism76, more studies will be required to identify additional phenotypes associated with male-female differences in levels of ecdysone, and other circulating factors such as JH, which modulates lipid metabolism in the enterocytes of mated females10. Recent studies have also made progress in understanding male-female differences in metabolism in response to stress and aging. For example, males and females differ in adaptation to oxidative stress induced by hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})77. In females, pre-treatment with low doses of H\textsubscript{2}O\textsubscript{2} prior to challenge with higher H\textsubscript{2}O\textsubscript{2} doses promotes survival; males show no survival benefit after H\textsubscript{2}O\textsubscript{2} pre-treatment. Interestingly, sex-specific expression of a mitochondrial Lon protease isoform is critical for this female-specific adaptation to H\textsubscript{2}O\textsubscript{2}-induced stress88. In addition to mitochondrial Lon protease, there is also sex-specific induction of the 20S proteasome during adaptation to H\textsubscript{2}O\textsubscript{2} induced stress78, and sex-specific sensitivity to genetic variation in the NADP(H) enzyme network79. Sex-specific effects of metabolic regulation on lifespan have been reported for mitochondrial thioredoxin reductase 280, cytosolic copper/zinc superoxide dismutase81,82, and DNA repair genes83, and one recent study described male-female differences in feeding behaviour, stress resistance and lifespan in response to high sugar feeding84. Together with the sex-specific effects of genes on stress responses and longevity identified using quantitative genetic approaches85-90, these recent studies underline the importance of examining both sexes in future studies of metabolism, stress responses, and aging.

Although the studies described above focus on the genetic, molecular, and biochemical mechanisms underlying sex differences in metabolism, it is important to note that sexual dimorphism exists in behaviours that modulate physiology and metabolism. For example, males and mated females flies differ in sleep91-93, food intake72, and food preferences94,95. Future studies will provide a more complete understanding of sex differences in physiology by addressing how sex differences in behaviour impact male-female differences in metabolism.

New insights into Drosophila sex determination: studies in females lead the way.

Two X chromosomes in female flies triggers the production of an X-derived protein called Sex-lethal (Sxl)96-98. Sxl is a splicing factor that introduces a sex-specific splice into the pre-mRNA of its main downstream target, transformer (tra); this binding allows a functional Tra protein to be produced in females99-101. Tra, also a splicing factor, interacts with its co-factor transformer-2 (tra2) to bind the pre-mRNA of its target genes doublesex (dsx) and fruitless (fru)102-105. Tra-dependent splicing of dsx pre-mRNA produces a female-specific isoform called DsxF. Tra-dependent splicing of fru pre-mRNA introduces a stop codon into P1 promoter-derived transcripts, thus no Fru P1 proteins are produced in females. In males, one X chromosome means that no Sxl is produced, and functional Tra protein is absent. Without Tra, dsx and fru P1-derived transcripts undergo default splicing to produce the male-specific isoforms of each gene, DsxM and FruM, respectively. Together, these genes explain many aspects of sexual development, reproduction, and behaviour1,5,7,106-110. In this section, we will highlight
new insights into the canonical sex determination pathway in *Drosophila* from recent
studies on female development and physiology (Fig. 3).

The prevailing model of *Drosophila* sex determination suggests the primary function
of Tra is to ensure the appropriate sex-specific splicing of dsx and fru P1-derived
transcripts. The regulation of sexual identity by dsx and fru has therefore been an
intensive area of research, yielding important insights into sexual development and
reproduction\(^7,107-120\). Over the past two years, studies on sex differences in development
and physiology have identified additional Tra-regulated phenotypes. For example, larval
size and adult weight are both reduced in females lacking Tra\(^{42**,63}\), while loss of Tra in
males has no effect\(^{42**}\). Although Tra may regulate body size partly via cell-autonomous
effects on cell size, Tra function in the fat body also plays a key role in mediating the
effects of Tra on body size, as rescuing Tra only in the fat body restored a normal body
size to *tra* mutant females\(^{42**}\). Interestingly, Tra’s effects on larval body size are
independent of its only known targets, dsx and fru, identifying a previously unrecognized
branch of the sex determination pathway that is Tra-dependent, but dsx- and fru-
independent\(^{42**}\) (Fig. 3). Instead, the *tra*-induced reduction in female body size may be
due to changes in the IIS pathway, as females lacking fat body *tra2* have reduced levels
of Dilp2 secretion from the IPCs, and genetically augmenting IIS activity restores a
normal body size to *tra* mutant females\(^{42**}\) (Fig. 2). However, the molecular mechanisms
underlying Tra’s regulation of Dilp2 secretion are unclear, emphasizing a need for more
knowledge on the molecular mechanisms linking Tra and IIS.

While knowledge of the downstream effectors of Tra is less developed with respect
to its regulation of body size, more progress has been made in identifying the genes
downstream of this Tra-dependent, dsx- and fru-independent, pathway in ISCs. Hudry
et al. (2016) showed that sexual dimorphism in ISC proliferation in the *Drosophila*
intestine is regulated by *Sxl* and *tra* independently of *fru* and dsx\(^{9}\). Significantly, this
study identified several new Tra-regulated genes that reproduce Tra’s effects on ISC
proliferation: reduced ocelli (rdo), imaginal disc growth factor 1 (idgf1), and Serpin 88Eb
(*Spn88Eb*)\(^{9,12}\) (Fig. 3). Although the molecular mechanism underlying Tra’s regulation of
these putative target genes remains unclear, it is interesting to note that Tra’s effects on
ISC proliferation and body size occur via distinct molecular mechanisms – Tra regulates
body size together with its binding partner *tra2*\(^{42**}\), whereas sex differences in ISC
proliferation are *tra2*-independent\(^{9}\). Interestingly, Tra may act through both canonical
and non-canonical mechanisms in the CNS to regulate the survival of female-specific
dilp7 neurons\(^{121,122}\). Future studies will be important to elucidate how Tra acquires this
cell- and tissue-specific activity at the molecular level.

In addition to Tra, novel insights into the regulation of Sxl, and its effects on
development and physiology, have recently been published. For example, loss of Sxl in
post-mitotic neurons abolished SSD\(^{33**}\), an effect that was mediated by Sxl function in at
least two subsets of neurons, the IPCs and Gad1 neurons (Fig. 2), but potentially
independently of IIS. Interestingly, Sxl’s regulation of SSD was not Tra-dependent,
corroborating a previous report\(^{123}\) of a Sxl-dependent, but Tra-independent, branch of
the sex determination pathway in the CNS. Thus Sxl and Tra act in specific tissues to
influence SSD via regulation of non-canonical target genes, although their effects differ
in magnitude: loss of Tra in the fat body reduces SSD\(^{42**}\), whereas reduced Sxl function
in neurons abolishes SSD\(^{33**}\). Future studies will be required to identify Sxl targets in
addition to Tra that mediate its effects on SSD, and to elucidate the mechanisms underlying the regulation of SSD by both Sxl and Tra, especially in light of data suggesting the presence of feedback loops in the sex determination pathway\(^{107,124}\). Further, since Sxl is responsible for the regulation of both dosage compensation and sex determination, it will be important to understand how changes to Sxl affect neuronal development, connectivity and function in the IPCs and Gad1 neurons, and to rule out any adverse effects of changes to the dosage compensation machinery in these neurons. Finally, more work will be needed to explore a role for Sxl in other aspects of development and physiology. For example, several studies recently identified spenito (nito) as a novel regulator of Sxl auto-regulation\(^{125-127}\). In females, loss of nito causes masculinization of female structures by disrupting the transfer of an N\(^6\)-methyladenosine (m\(^5\)A) modification to Sxl pre-mRNA that is required for Sxl’s female-specific alternative splicing\(^{125,126}\). Interestingly, nito plays a key role in maintaining triglyceride homeostasis in *Drosophila* larvae\(^{128}\). Although the larvae in the nito study were not sexed, future studies will determine whether nito affects sex differences in triglyceride homeostasis in part through its interaction with Sxl.

Beyond Sxl and tra, tra2, dsx and fru also have unexplored roles in the regulation of development and physiology. For example, tra2 affects the regulation of triglyceride storage in adults\(^{129}\), dsx regulates cell size and mRNA levels of many circulating factors known to affect development and physiology\(^{42**107}\), and the activity of fru neurons has been implicated in the regulation of fat storage\(^{130}\). Thus, studies of development and physiology are rapidly identifying new roles for established sex determination genes. In addition, studies on factors that regulate development and physiology have provided new insights into *Drosophila* sex determination. For example, steroid hormone ecdysone affects sex determination via regulation of the *let-7-C* micro-RNA cluster\(^{73*}\), and *Chronologically inappropriate morphogenesis* (Chinmo) affects sexual identity in the *Drosophila* testis via regulation of sex determination genes dsx and tra\(^{131,132}\). Although more studies are needed to identify additional genes and pathways that modulate the regulation of sex determination genes, these studies are likely to yield exciting new insights into sex determination in *Drosophila*. Together with studies to increase knowledge of sex differences in development and physiology, a deeper understanding of sex determination mechanisms will ensure *Drosophila* remains a leading model for studies of sex differences in development and physiology.
FIGURE LEGENDS

Figure 1 – Sex differences in intestinal growth, regeneration, and dysfunction.

Recent studies identified significant sex differences in the proliferation of intestinal stem cells (ISCs) in the *Drosophila* gut in different contexts. (A) Under homeostatic conditions, female ISCs proliferate at a higher rate than male ISCs. This leads to increased gut length in females\(^*\). (B) In response to infection- and detergent-induced damage to the intestinal epithelium, female ISCs maintain a higher rate of proliferation than male ISCs\(^*\).\(^*\). (C) Females develop increased age-related dysfunction of the intestinal epithelial barrier compared to males\(^*\).\(^*\), and have increased susceptibility to genetically-induced tumours\(^*\).

Figure 2 – Multiple mechanisms contribute to sex differences in larval growth in *Drosophila*.

A working model to integrate findings from recent studies on sex differences in the regulation of larval growth. Several mechanisms have been identified, which we describe in detail. (A) Two recent studies identified a role for the insulin/insulin-like growth factor signaling pathway (IIS) in the regulation of sex differences in body size\(^*\).\(^*\). A comparison of *Drosophila* insulin-like peptide (Dilp) regulation between males and females suggest females have higher Dilp2 secretion than males, whereas males have higher levels of *dilp3* mRNA\(^*\).\(^*\). This increased Dilp2 secretion may affect IIS, as elevated IIS activity was detected in late third instar larvae\(^*\),\(^*\), though not at earlier stages\(^*\),\(^*\), supporting a model in which female larval growth may be increased due to elevated IIS activity. Interestingly, the sex of the fat body, as determined by sex determination gene *transformer* (*tra*), controls male-female differences in larval weight\(^*\).\(^*\). Interestingly, Sxl's regulation of body size is independent of its main target gene *Tra*. Furthermore, although the IPCs are known to produce Dilp2, Dilp3, Dilp5\(^*\),\(^*\), null mutations in *dilp2* and mutant lacking *dilp1-5* do not completely abolish SSD\(^*\),\(^*\), suggesting additional IPC-derived factors, such as Drosulfakinin\(^*\), may be involved. (B) A recent study proposed an additional mechanism for the regulation of sex differences in body size. In this model, the sex of the IPCs and Gad1 neurons, as determined by sex determination gene *Sex-lethal* (*Sxl*), controls male-female differences in larval weight\(^*\).\(^*\). Interestingly, Sxl's regulation of body size is independent of its main target gene Tra. Furthermore, although the IPCs are known to produce Dilp2, Dilp3, Dilp5\(^*\),\(^*\), null mutations in *dilp2* and mutant lacking *dilp1-5* do not completely abolish SSD\(^*\),\(^*\), suggesting additional IPC-derived factors, such as Drosulfakinin\(^*\), may be involved. (C) One final study demonstrated that potent growth regulator Myc may play a role in the regulation of sex differences in body size\(^*\). Normally, Myc mRNA levels are higher in females than in males\(^*\). Interestingly, males carrying duplications spanning the Myc locus had a larger body size than control males, whereas females heterozygous for a Myc mutant allele were smaller than control females\(^*\). Together, these results suggest that increased Myc levels in females promote an increased rate of larval growth, perhaps through changes to the levels of ribosomal RNA (rRNA), ribosome biogenesis, and transfer RNA (tRNA)\(^*\),\(^*\).

Figure 3 – New insights into the *Drosophila* sex determination pathway.
According to the prevailing view of *Drosophila* sex determination, female sex is specified by the presence of two X chromosomes, which triggers the production of an X-derived protein called Sex- lethal (Sxl). Sxl is a splicing factor that introduces a sex-specific splice into the pre-mRNA of its main downstream target, *transformer (tra)*; this binding allows a functional Tra protein to be produced in females. Tra, also a splicing factor, binds to the pre-mRNA of its target genes *doublesex (dsx)* and *fruitless (fru)*. Tra-dependent splicing of *dsx* pre-mRNA produces a female-specific isoform called Dsx^F^. Tra-dependent splicing of *fru* pre-mRNA introduces a stop codon into P1 promoter-derived transcripts, thus no Fru P1 proteins are produced in females. Recent studies on development and physiology have added to our knowledge of the sex determination pathway by identifying additional downstream branches of the pathway, and by identifying context-dependent effects of these pathways in different tissues, and at different times during development. For example, in addition to the canonical sex determination pathway that operates in the larval and adult fat bodies (A), there is an additional branch of the sex determination pathway that is Tra-dependent, but *dsx*-independent, that regulates body size in female larvae^{42**}. Tra’s regulation of body size via this newly identified branch depends on Tra’s binding partner *transformer2 (tra2)^{42**}.* Future studies will need to identify downstream targets of Tra that mediate its effects on larval growth. (B) In the intestinal stem cells, this Tra-dependent, *dsx*-independent, branch of the sex determination pathway promotes increased intestinal stem cell (ISC) proliferation; however, this function of Tra does not require *tra2^{9**}.* Candidate Tra targets that affect ISC proliferation include *imaginal disc growth factor 1 (idgf1)*, *reduced ocelli (rdo)*, and *Serpin 88Eb (Spn88Eb)^{9**}.* (C) In the larval and adult central nervous systems (CNS), Tra and Tra2 specify female neural circuits via regulation of *dsx* and *fru* pre-mRNA in the canonical sex determination pathway, as previously described. Interestingly, Tra may regulate the survival of female-specific *Drosophila insulin-like peptide 7 (dilp7)-expressing neurons in adults through both canonical, and non-canonical pathways^{121,122}.* In adults and larvae, two recent studies have identified a Sxl-dependent, but Tra-independent, branch of the pathway that functions in subsets of neurons to create sex differences in physiology^{33**,123}.* For example, Sxl function in IPCs and Gad1 neurons plays a critical role in creating sex differences in larval weight^{33**}.

ACKNOWLEDGEMENTS

The Rideout lab is supported by operating grants from the Natural Sciences and Engineering Research Council, Canadian Institutes for Health Research, Canadian Foundation for Innovation, Michael Smith Foundation for Health Research, and start-up funds from The University of British Columbia. JWM is supported by a scholarship from The University of British Columbia CELL Program.
Papers published within the review period have been marked as:

* of special interest

** of outstanding interest

This study identifies differences between virgin females and males in ISC proliferation, gut size, and susceptibility to Notch-induced tumourigenesis. Through genetic manipulation of the sex determination pathway in ISCs, the authors identify important roles for Sxl and tra, but not dsx, fru, and tra2, in creating sex differences in ISC proliferation. The authors also reveal several genes that lie downstream of Tra in the regulation of sexually dimorphic ISC proliferation.

In this study, the authors show that ISC proliferation is stimulated to increase gut size in females after mating. They identify a post-mating increase in juvenile hormone as the trigger for this increased ISC proliferation and intestinal growth.

This study characterized sex differences in age-related changes to the Drosophila intestine, identifying sex differences in ISC proliferation, in the age-related degeneration of the epithelium, and in infection-induced damage to the intestine.

33. **Sawala, A. & Gould, A.P.** The sex of specific neurons controls female body growth in Drosophila. *PLoS Biol* **15**, e2002252 (2017). *This study describes the mechanisms underlying the control of SSD by sex determination gene Sxl. The authors found that Sxl acts in the brain to control SSD, where at least some of Sxl’s effects on SSD are mediated by its function in the IPCs. The authors describe no effect of loss of IPC-expressed Dilps on SSD, suggesting other IPC-derived factors influence SSD.*

42. **Rideout, E.J., Narsaiya, M.S., Grewal, S.S.** The sex determination gene transformer regulates male-female differences in Drosophila body size. *PLoS Genetics* **11**, e1005683 (2015). *This study identified a role for sex determination gene tra in the regulation of sex differences in cell and body size. The authors showed that Tra’s effects on SSD were mediated by Tra activity in the larval fat body. Fat body expression of Tra promotes increased female body size by stimulating Dilp2 secretion from the IPCs.*

The authors confirm previous findings that tra regulates SSD, and identify highly conserved growth regulator Myc as an additional regulator of SSD in Drosophila. Since Myc regulates cell and tissue growth in several organs, the sex-biased effects of Myc on body size has important implications for the regulation of cell and tissue growth.

The authors determined the influence of 42 mutations in the EGFR and TGF-beta pathways (in a heterozygous state) on wing size and shape in males and females.

This paper uncovers sex-specific regulation of the Toll pathway; both in normal conditions, and in response to infection with Gram-negative bacteria. Loss of Toll pathway function reverses the sexual dimorphism in survival upon infection with Gram-negative bacterium *P. rettgeri*.

This paper describes how ecdysone drives differences in triglyceride and glycogen storage between males and mated females. Interestingly, the authors identify a key role for ecdysone signaling in the CNS in mediating the effects of ecdysone on energy homeostasis, perhaps due to altered food intake.

This study identified the let-7-C cluster of miRNAs, including let-7 and mir125, in the regulation of sex determination during development, and in the maintenance of sexual identity during adult life. Also, the authors identify a role for steroid hormone ecdysone in the maintenance of sexual identity in adults. Ecdysone’s effects on sexual identity are mediated in part by the let-7 miRNA, but also through other unidentified effectors.

This study showed that females survive exposure to toxic, but sub-lethal, doses of H₂O₂ if they are pre-treated with H₂O₂. This increased survival to toxic H₂O₂ exposure following pre-treatment does not occur in males. The authors demonstrate that the mitochondrial Lon protease is regulated in a sex-specific manner, and plays a key role in the sex-specific adaptation to oxidative stress.

This study demonstrates that sex differences in neuronal activity influence male-female differences in sleep. Given that sleep is important for metabolic regulation, this behavioural difference between males and females may affect sex differences in metabolism.

The authors identify an important role for spenito, a newly identified regulator of sex determination, in modulating whole-body triglyceride storage.

Figure 1

Female Intestine

- **Homeostatic Conditions**
 - Robust increase in proliferation

- **Damage-Induced Regeneration**
 - Detergent-induced damage
 - Infection-induced damage

- **Dysregulation of ISC Proliferation**
 - Tumourigenic insult
 - Age-related pathology
 - Reduced barrier function

Male Intestine

- **Homeostatic Conditions**
 - Low proliferation

- **Damage-Induced Regeneration**
 - Detergent-induced damage
 - Infection-induced damage

- **Dysregulation of ISC Proliferation**
 - Tumourigenic insult
 - Age-related pathology

Intestinal Stem Cell

Proliferating Intestinal Stem Cell

Enterocyte
Figure 3

A

Sxl

tra pre-mRNA

Tra

Tra2

? pre-mRNA

dsx pre-mRNA

? pre-mRNA

DsxF

Female body size

Yolk protein gene expression

Larval Fat Body

Larval and Adult Fat Body

Adult Intestinal Stem Cells

B

Sxl

tra pre-mRNA

Tra

Idgf1, rdo, Spn88Eb pre-mRNA

Increased ISC Proliferation

Idgf1, rdo, Spn88Eb

C

Sxl

tra pre-mRNA

Tra

dsx pre-mRNA

fru P1 pre-mRNA

fruF mRNA (no protein)

Female Body Size

Female Neural Circuits

dilp7 Neuron Survival

CNS

Larval Fat Body

Larval and Adult Fat Body

Adult Intestinal Stem Cells

Larval and Adult CNS

Adult CNS